34 / 2023-03-29 15:16:46
Research on GNSS CORS mining area monitoring data processing based on the deep learning model
prediction of surface subsidence in mining area ; automated monitoring data ; CEEMDAN ; CNN-BiLSTM
摘要待审
星星 肖 / 安徽理工大学
Abstract: To make more effective use of the advantages of GNSS in long-term real-time monitoring of mining subsidence in mining areas, realize the deep mining of hidden features and hidden information in the data, and improve the prediction accuracy of surface subsidence in mining areas. In this paper, we propose a hybrid surface subsidence prediction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), convolutional neural network (CNN) and A mixed mining surface subsidence prediction method with bidirectional long-term and short-term memory network (BiLSTM). Firstly, the morphological data differences between the working face subsidence and industrial monitoring areas are compared and analyzed. The CEEMDAN is used to reconstruct the elevation component of the station, and it is input into the CNN model to extract the hidden information of the component data. Then, the short-term prediction of station elevation data is realized by constructing the BiLSTM model. The experimental results show that this model has a better prediction effect than the traditional CNN, LSTM, and CEEMDAN-LSTM models.

 
重要日期
  • 会议日期

    10月26日

    2023

    10月29日

    2023

  • 10月15日 2023

    摘要截稿日期

  • 10月15日 2023

    初稿截稿日期

  • 11月13日 2023

    注册截止日期

主办单位
国际矿山测量协会
中国煤炭学会
中国测绘学会
承办单位
中国矿业大学
中国煤炭科工集团有限公司
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询