46 / 2023-03-30 15:28:54
Study on Prediction Model of sSurface Subsidence Driven by Starry Multi-platform Monitoring Data
starry ground monitoring,InSAR monitoring, UAV/LiDAR, data-driven, settlement prediction model
摘要待审
YANG Fan / Liaonin Technical University
Aiming at the large-scale surface subsidence disaster caused by coal mining, multi-platform monitoring data such as GNSS, InSAR, UAV/LiDAR, leveling survey and borehole peeper are adopted to conduct fusion algorithm analysis of multi-platform data by using Kalman filter model. GNSS and level point data were used to fit the point cloud measurement data obtained by InSAR and UAV/LiDAR platforms, and the deep learning method was used to model the time series data, and the inversion method of surface subsidence prediction model parameters was established. Through the comprehensive analysis of the starry ground multi-platform monitoring data of Zhaozhuang Coal industry 2319 working face and Changping Coal industry 5201 first mining face, the experiment shows that the established starry ground multi-platform monitoring data surface subsidence prediction model has high accuracy, which provides a scientific basis for obtaining high-precision prediction parameters under the terrain mining conditions in mountainous areas.

 
重要日期
  • 会议日期

    10月26日

    2023

    10月29日

    2023

  • 10月15日 2023

    摘要截稿日期

  • 10月15日 2023

    初稿截稿日期

  • 11月13日 2023

    注册截止日期

主办单位
国际矿山测量协会
中国煤炭学会
中国测绘学会
承办单位
中国矿业大学
中国煤炭科工集团有限公司
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询