84 / 2023-04-13 09:58:30
Role of hot electrons in mitigating ablative Rayleigh-Taylor instability
Hot electrons,ablative Rayleigh-Taylor instability,hydrodynamic instability
摘要录用
Jun Li / Institute of Applied Physics and Computational Mathematics
Rui Yan / University of Science and Technology of China
赵 斌 / 南京工程学院
Jian Zheng / university of science and technology of china
Huasen Zhang / Institute of Applied Physics and Computational mathematics
Xiyun Lu / University of Science and Technology of China
In laser-driven inertial confinement fusion (ICF) specifically with high laser intensities, energetic (hot) electrons (HEs) can be generated via laser-plasma instabilities. HEs can significantly impact the target performance by modifying the implosion hydrodynamics. In this work, the effects of moderate-energy (about 20 to 40 keV) HEs on the evolution of ablative Rayleigh–Taylor instability (ARTI) are studied through numerical simulations with a multigroup diffusion model in which the HE population is treated as a high-energy group launched from the boundary. With HEs present, it is found that ARTI linear growth rates are reduced even though the acceleration of the implosion shell is enhanced by HEs. The reduction in the linear growth rate is owing to the increase in the ablation velocity and the density scale length, and this stabilization effect is greater in the shorter-wavelength modes and/or higher-energy HE cases. The ARTI linear growth does not get mitigated monotonically as the HE number density increases for a given fixed HE kinetic energy. The latest results showing that HEs can stabilize the highly nonlinear growth of multimode ARTI are also presented.
重要日期
  • 会议日期

    06月05日

    2023

    06月09日

    2023

  • 04月30日 2023

    提前注册日期

  • 05月01日 2023

    摘要截稿日期

  • 05月01日 2023

    摘要录用通知日期

  • 05月01日 2023

    初稿截稿日期

  • 05月31日 2023

    注册截止日期

主办单位
等离子体物理重点实验室
北京师范大学天文系
承办单位
Matter and Radiation at Extremes期刊
中国工程物理研究院流体物理研究所
北京应用物理与计算数学研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询