67 / 2023-10-09 20:54:12
Inverse design of electromagnetically induced transparency(EIT) metamaterials based on autoencoder with reconstruction error
Metamaterial,Electromagnetically induced transparency effect,Deep learning,Inverse design
终稿
Peishuai Tian / Huazhong University Of Science And Technology
Xingyu Zhou / Huazhong University of Science and Technology;School of Electrical and Electronic Engineering;the State Key Laboratory of Advanced Electromagnetic Engineering and Technology
Yanqi Hu / Huazhong University of Science and Technology
Yongqian Xiong / Huazhong University of science and Technology
In the paper, we design a new deep learning (DL) network to analysis and design the electromagnetically induced transparency (EIT) metamaterials. The network is divided into two parts: dimensionality reduction reconstruction network and inverse design. The dimensionality reduction reconstruction network mainly deals with high-dimensional input data. In the inverse design, we combine the advantages of convolutional neural network (CNN) and long short term memory (LSTM) networks to predict the EIT metamaterial structure. Finally, the inverse design network has effectively reduced the mean square errors (MSE) on the validation set to 0.0032. Besides, the network can quickly predict the structure parameters within the error of 0.26 µm. By comparing the spectra of real and predicted parameters on the validation set, we are confident that the network will pave a new path for designing EIT metamaterials.



 
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询