FAult Diagnosis for High Speed Railway Traction Network Based on Relief-F for Multi-layer Perceptron
编号:12 访问权限:仅限参会人 更新:2023-11-20 13:45:31 浏览:501次 口头报告

报告开始:2023年12月09日 14:00(Asia/Shanghai)

报告时间:15min

所在会场:[S5] Traction power supply technology and application [S5] Traction power supply technology and application

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The problem of diagnosing faults in high speed railway traction network is addressed in this study. A fault diagnosis algorithm based on a multi-layer perceptron is proposed as a solution. The algorithm utilizes voltage and current data from 14 measurement points. Ten time-domain features are extracted from the data, including maximum value, minimum value, peak-to-peak value, mean value, root mean square value, waveform factor, rectified mean value, pulse factor, skewness, and kurtosis. The Relief-F algorithm is employed to rank the importance of these features, followed by a forward search process for optimization. The results demonstrate that the proposed method achieves a high level of accuracy in fault detection and classification. This approach provides valuable insights for further research in the field of fault diagnosis for overhead contact systems.
关键词
High speed railway traction network,Relief-F algorithm,multi-layer perceptron,fault diagnosis
报告人
Wenbo Zhou
School of Electrical Engineering;Southwest Jiaotong University

稿件作者
Qi Wang School of Electrical Engineering;Southwest Jiaotong University
Wenbo Zhou School of Electrical Engineering;Southwest Jiaotong University
Sheng Lin School of Electrical Engineering; Southwest Jiaotong University
Zhengyou He School of Electrical Engineering;Southwest Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询