A Comparative Analysis for Optimal Windfarm Cluster Identification Using Hopkins Index and Silhouette Coefficient
编号:120 访问权限:仅限参会人 更新:2023-11-20 13:53:18 浏览:212次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This paper investigates the determination of the optimal number of clusters for wind farm layout optimization using wind speed data. The objective is to compare the clustering results obtained from two methods: Silhouette coefficient and Hopkins clustering index. The study focuses on the application of K-means clustering to identify the cluster configurations that best represent the wind farm layout. The wind speed data used in this research corresponds to an offshore wind farm, comprising 25 turbines over a 30-day period. The silhouette coefficient and Hopkins clustering index are utilized to determine the optimal number of clusters for the wind farm layout. The results of the study prove the effectiveness of both methodologies in estimating the optimal cluster number. The silhouette coefficient analysis reveals an optimal cluster number of 8, with a coefficient value of 0.1368. The wind farm layouts obtained from each method are compared and plotted to visualize the clustering configurations. In contrast, the Hopkins-based layout results in a smaller number of clusters, implying a more cohesive turbine distribution. The findings of this study provide insights into the determination of the optimal cluster number for wind farm layout optimization. The comparison of the silhouette coefficient and Hopkins clustering index serves as a valuable reference for wind farm developers and operators in making informed decisions regarding the number of clusters to consider in the layout design. Further research is needed to evaluate the impact of these clustering methods on power output and overall wind farm performance.
关键词
Cluster analysis,Hopkins statistics index,Offshore wind farms,Silhouette coefficient,Wind farm clustering
报告人
Siyu Tao
Nanjing University of Aeronautics and Astronautics

稿件作者
Siyu Tao Nanjing University of Aeronautics and Astronautics
Victor Kimutai Nanjing University of Aeronautics and Astronautics
Andrés Feijóo University of Vigo
Fuqing Jiang Nanjing University of Aeronautics and Astronautics
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询