Inverse Design of Electromagnetically Induced Transparency Metamaterials Based on Generative Adversarial Network
编号:136 访问权限:仅限参会人 更新:2023-11-20 13:53:21 浏览:221次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The unique properties of electromagnetically induced transparency (EIT) metamaterials have caused a lot of concern in the field of terahertz wave regulation, but the traditional design methods of metamaterials have the problems of long design cycles and high trial and error costs. Applying the deep learning method to the inverse design process of terahertz metamaterials can greatly reduce the design complexity so that the EIT metamaterial structure can be quickly designed according to the requirements. This paper constructs a generative adversarial network (GAN) model for EIT metamaterial structure design, which realizes the mapping relationship between the target spectrum and metamaterial structure parameters. The proposed GAN model can accurately predict structure parameters of the EIT metamaterial according to the target spectrum, and the error between the generated and the real parameters is less than 1μm. Moreover, by introducing fuzzy processing, the proposed GAN model can accurately generate multiple sets of metamaterial structures according to the same target spectrum, providing more options for designers. This model offers a novel and efficient design method for EIT metamaterials.
关键词
Deep learning,Inverse design,Electromagnetically induced transparency metamaterials
报告人
Xingyu Zhou
Mr. Huazhong University of Science and Technology

稿件作者
Xingyu Zhou Huazhong University of Science and Technology
Peishuai Tian Huazhong University of Science and Technology
Yanqi Hu Huazhong University of Science and Technology
Qitai Sun Huazhong University of Science and Technology;State Key Laboratory of Advanced Electromagnetic Engineering and Technology;Wuhan National High Magnetic Field Center
Yongqian Xiong Huazhong University of science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询