Enhanced Particle Filtering-Based Lifetime Prediction for IGBT in High-speed Trains
编号:22 访问权限:仅限参会人 更新:2023-11-20 13:45:33 浏览:539次 口头报告

报告开始:2023年12月09日 09:45(Asia/Shanghai)

报告时间:15min

所在会场:[S2] Power electronic technology and application [S2] Power electronic technology and application

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
For the high-speed, high-power and long-attended-time applications, traction converters with IGBT in high speed train have become the most fragile component during the conventional operations. In consideration of the difficulty of monitoring junction temperature of IGBT, the fatigue failure analysis is used as the basis to fit the junction temperature mathematical model, and then the enhanced particle filtering algorithm is used to predict the lifetime of IGBT module. Case studies performed on a simulation example and two test-to-failure experiments indicate that the presented approach can accurately predict the lifetime of IGBT,which is helpful for improving the reliability of the device.
 
关键词
IGBT, life prediction, junction temperature prediction, particle filter, fatigue failure
报告人
Zhang Kunpeng
Lecturer East China Jiaotong University

稿件作者
Zhang Kunpeng East China Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询