Research on vulnerability assessment method of electric power network based on graph neural
编号:72 访问权限:仅限参会人 更新:2023-11-20 13:45:39 浏览:512次 口头报告

报告开始:2023年12月09日 15:30(Asia/Shanghai)

报告时间:15min

所在会场:[S7] Power system protection and control [S7] Power system protection and control

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
This paper proposes a vulnerability assessment method for power network based on graph neural network using complex network theory and graph neural network model. First, the eigenvector centrality (EC) in complex network theory is chosen as the measure of power system vulnerability. Second, an unsupervised power network vulnerability assessment model based on graph neural networks is established based on power system topological parameters and operational data. Finally, the learning effect and computational time efficiency of the model are explored, and the key nodes in the power network are identified.
 
关键词
Graph neural network; Complex network; Eigenvector Centrality;
报告人
Zijian Wan
student Southwest Jiaotong University

稿件作者
Zijian Wan Southwest Jiaotong University
Xu Liu Southwest Jiaotong University
Yeqing Zhang Southwest Jiaotong University
Yan Wang Southwest Jiaotong University
Yida Zeng Southwest Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询