High Spatial Resolution Time Projection Chamber Technology R&D for the Future Circular e+e- Collider
编号:98 访问权限:仅限参会人 更新:2024-10-16 01:13:41 浏览:222次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
High Spatial Resolution Time Projection Chamber Technology R&D for the Future Circular e+e- Collider. The future linear and circular electron positron colliders were been proposed as a Higgs and a high luminosity Z pole factory in last few years. The Circular Electron Positron Collider (CEPC) accelerator Technology Design Report (TDR) has been released in 2023. The baseline design of a detector concept consists of a large 3D tracking system, which is a high precision (about 100 m) spatial resolution Time Projection Chamber (TPC) detector as the main track embedded in a 3.0T solenoid field, especially for the accelerator operating at Tera-Z. TPC requires the longitudinal time resolution (<100ns) and the physics goals require PID resolution (<3%). A number of critical issues are still remaining regarding the TPC research. The simulation and Particle IDentification (PID) resolution show TPC technology potential to extend Tera Z at the future e+e- collider.
In this talk, we will present the feasibility and status of high precision TPC as the main track detector for e+e collider. The traditional pad readout is designed about 1mm x 6mm and the pixelated readout is designed about 55 m x 55 m or bigger size. Compared with the pad readout, the pixelated readout option will obtain the better spatial resolution of single electrons, the very high detection efficiency in excellent tracking and good dE/dx performance. A smaller prototype TPC has been developed with a drift length of 500 mm, gaseous chamber, 20000V field-cage, the low power consumption FEE electronics and DAQ have been commissioned and some studies have been finished. Some updated experimental results including the spatial resolution, the gas gain, the laser track reconstruction and dE/dx will be reported. The track performance results and summarize the next steps of the pad/pixelated TPC technology for e+e collider will presented in this talk. Finally, we will review the track reconstruction performance results and summarize the next steps towards TPC construction for CEPC physics and detector TDR.
关键词
暂无
报告人
Huirong Qi
Institute of High Energy Physics, CAS

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月13日

    2024

    10月18日

    2024

  • 10月18日 2024

    报告提交截止日期

  • 10月31日 2024

    初稿截稿日期

  • 01月31日 2025

    注册截止日期

主办单位
University of Science and Technology of China
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询