251 / 2024-03-14 13:20:51
Off-policy reinforcement learning for input-constrained optimal control of dual-rate industrial processes
Reinforcement Learning, Dual Time Scales, Optimal Operational Control, Singular perturbation Theory
摘要录用
皓然 栾 / 辽宁石油化工大学
瑞元 邹 / 辽宁石油化工大学
金娜 李 / 辽宁石油化工大学
Real industrial operating systems are not ideally immune to unmodeled dynamics, and industrial processes usually operate on multiple time scales, which poses a problem for operational optimization of industrial processes. In order to better address these difficulties, a composite compensated controller is designed to solve the input-constrained optimal operation control (OOC) problem in dual time scales by integrating reinforcement learning (RL) techniques and singular perturbation (SP) theory. Within this control framework, a self-learning compensatory control method is proposed to optimize the operational metrics of a dual time-scale industrial system with uncertain dynamic parts to the desired values. Finally, the effectiveness of the method is verified by an industrial mixed separation thickening process (MSTP) example.
重要日期
  • 会议日期

    05月29日

    2024

    06月01日

    2024

  • 05月08日 2024

    初稿截稿日期

主办单位
中国矿业大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询