Hydrothermal synthesis and dielectric responses of sillenite Bi25FeO39 microcrystals with hierarchical microstructures
编号:21 访问权限:仅限参会人 更新:2024-05-21 11:56:08 浏览:1157次 口头报告

报告开始:2024年05月30日 19:50(Asia/Shanghai)

报告时间:10min

所在会场:[S7] Minerals and Advanced Energy Materials [S7-2] Evening of May 30th

暂无文件

摘要
Sillenite Bi25FeO39 particles have drawn considerable interest due to their high performance in photocatalytic, dielectric and humidity sensing fields. However, their synthetic processes especially the approach to modulate their shapes and sizes have not been described explicitly. In this paper, a facile hydrothermal route to prepare dispersed Bi25FeO39 microcrystals is provided. By changing the ratio of Bi3+: Fe3+ from 1:1 to 2:1 in aqueous solution, the as-prepared Bi25FeO39 microcrystals are categorized from tetrahedral to cubic series. Further tailoring on processing parameters such as pH value, temperature and reaction time results in various hierarchical micro-nanostructures. The compositions, morphologies and growth evolution of the as-prepared Bi25FeO39 are discussed. The dielectric and ferroelectric properties were tested and compared. The results show that Bi25FeO39 has obvious relaxation characteristics, and is more suitable for applications in the temperature range from room temperature to 200 °C above 105 Hz, where the dielectric constant can be kept around 150 and the dielectric loss is as low as 0.2; the maximum polarisation strength of the ferroelectric performance test further verifies the dielectric test results, and the strongest ferroelectricity was measured for the BFO-C2, and the cubic system of the BFO-C1 and BFO-C2 have the largest coercive electric field, indicating that the cubic series requires a larger electric field to drive the domain flip than the tetrahedral series of BFO; the maximum polarisation strength and smaller residual polarisation strength of BFO-T3 make it possible to be used in the field of energy storage capacitors in the future.
 
关键词
Bismuth ferrite; Hydrothermal processes; Hierarchical nanostructures; Dielectric properties
报告人
Zhimin Fu
China University of Mining and Technology

稿件作者
含卓 张 中国矿业大学
志民 付 中国矿业大学材料与物理学院
康 雍 中国矿业大学
超甫 张 中国矿业大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月29日

    2024

    06月01日

    2024

  • 05月08日 2024

    初稿截稿日期

主办单位
中国矿业大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询