Off-policy reinforcement learning for input-constrained optimal control of dual-rate industrial processes
编号:28 访问权限:仅限参会人 更新:2024-05-20 09:56:41 浏览:987次 口头报告

报告开始:2024年05月30日 15:40(Asia/Shanghai)

报告时间:20min

所在会场:[S4] Intelligent Equipment Technology [S4-2] Afternoon of May 30th-2

暂无文件

摘要
Real industrial operating systems are not ideally immune to unmodeled dynamics, and industrial processes usually operate on multiple time scales, which poses a problem for operational optimization of industrial processes. In order to better address these difficulties, a composite compensated controller is designed to solve the input-constrained optimal operation control (OOC) problem in dual time scales by integrating reinforcement learning (RL) techniques and singular perturbation (SP) theory. Within this control framework, a self-learning compensatory control method is proposed to optimize the operational metrics of a dual time-scale industrial system with uncertain dynamic parts to the desired values. Finally, the effectiveness of the method is verified by an industrial mixed separation thickening process (MSTP) example.
关键词
Reinforcement Learning, Dual Time Scales, Optimal Operational Control, Singular perturbation Theory
报告人
Haoran Luan
LiaoNing Petrochemical University

稿件作者
皓然 栾 辽宁石油化工大学
瑞元 邹 辽宁石油化工大学
金娜 李 辽宁石油化工大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月29日

    2024

    06月01日

    2024

  • 05月08日 2024

    初稿截稿日期

主办单位
中国矿业大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询