COFNet: a deep learning model to predict the specific surface area of covalent-organic frameworks using structural images and statistic features
编号:82 访问权限:仅限参会人 更新:2024-05-16 20:10:57 浏览:1010次 口头报告

报告开始:2024年05月30日 16:55(Asia/Shanghai)

报告时间:15min

所在会场:[S6] Clean Processing, Conversion and Utilization of Energy Resources [S6-1] Afternoon of May 30th

暂无文件

摘要
  Specific surface area is an important parameter to evaluate the capture capacity of covalent-organic frameworks (COFs). Its prediction is critical to theoretical design of new COFs; however, existing computational codes can only provide a rough estimation. Herein, we propose to predict the Brunauer-Emmett-Teller (BET) specific surface areas for COFs using a newly developed deep learning model (COFNet). This model integrates deep learning algorithms with attention mechanism, and innovatively accepts structural images of COFs and the statistical features computed from these images as model inputs. In this study, both model feature extraction and statistical feature computation are simply completed using images only, avoiding additional complex theoretical calculations. This greatly facilitates the prediction of BET specific surface areas. Results show that the proposed COFNet can satisfactorily predict specific surface area of COFs with a Pearson correlation coefficient (R) of 0.812. It significantly outperforms the publicly available Zeo++ software (which achieves R of 0.377). The developed COFNet model is a promising tool to efficiently predict experimental BET specific surface areas of COFs.
关键词
Convolutional neural network,BET specific surface area,COFs,Image-based prediction
报告人
Wang Teng
China University of Mining and Technology

稿件作者
腾 王 中国矿业大学化工学院
和胜 俞 中国矿业大学化工学院
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月29日

    2024

    06月01日

    2024

  • 05月08日 2024

    初稿截稿日期

主办单位
中国矿业大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询