534 / 2024-06-30 22:40:06
Flood routing network construction in mega-basin using data-driven artificial intelligence model
Flood routing; Muskingum model; Long short-term memory; Data-driven model; Mega-basin
全文录用
志明 刘 / 华中科技大学土木与水利工程学院
莉 莫 / 华中科技大学教授
Rapid and accurate simulation of flood routing network in mega-basin is key to the development of water resources management policies. However, there is no generalized method for dealing with multi-tributary flood routing problems. In this study, we propose a generalization method applicable to complex river systems to construct flood routing network. What’s more, we use a data-driven long short-term memory (LSTM) method to simulate flood routing in rivers and choose the linear Muskingum model (LMM) as a comparative model of LSTM. In this study, the Upper Yangtze River basin is divided into four sections, and the flood routing network is simulated using LMM and LSTM methods. Compare to LMM method, LSTM method can achieve higher Nash-Sutcliffe Efficiency (NSE) values in all scenarios. The NSE values of four hydrological stations are above 0.99 in training, validation and test periods, which indicates that LSTM can be applied to simulate the flood routing network in the Upper Yangtze River basin.
重要日期
  • 会议日期

    10月14日

    2024

    10月17日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 10月17日 2024

    注册截止日期

主办单位
国际水利与环境工程学会亚太地区分会
承办单位
长江水利委员会长江科学院
四川大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询