The Future of Patient Care: Revolutionizing Treatment Plans through Deep Learning and Precision Medicine
编号:73 访问权限:仅限参会人 更新:2024-08-17 15:15:41 浏览:316次 口头报告

报告开始:暂无开始时间(Asia/Bangkok)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Precision medicine aims to tailor medical treatment to the individual characteristics of each patient, and the integration of deep learning techniques has emerged as a transformative approach in this field. This research paper explores the application of deep learning algorithms in the development of precision medicine strategies, focusing on their ability to analyze complex datasets, including genomic, proteomic, and clinical data. We present a comprehensive framework that utilizes convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to identify biomarkers and predict patient-specific responses to therapies across various diseases, including cancer and cardiovascular disorders. Our findings demonstrate that deep learning models significantly enhance the accuracy of disease prediction and treatment personalization compared to traditional methods. Additionally, we discuss the challenges associated with data heterogeneity, model interpretability, and ethical considerations in deploying these technologies in clinical settings. Through a series of case studies, we illustrate the potential of deep learning to revolutionize patient care by enabling more effective and individualized treatment plans. This research underscores the importance of interdisciplinary collaboration in advancing precision medicine and highlights future directions for integrating artificial intelligence into healthcare systems.
关键词
Deep Learning,Precision Medicine,Health Care,Artificial Intelligence
报告人
Riyaz Ahmad
Researcher Southwest Jiaotong University

稿件作者
Riyaz Ahmad Southwest Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询