Lung Cancer Detection based on Image Processing using CT scan Images
编号:95 访问权限:仅限参会人 更新:2024-08-27 14:05:42 浏览:361次 口头报告

报告开始:暂无开始时间(Asia/Bangkok)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Lung cancer remains one of the deadliest cancers worldwide, necessitating early detection for improved patient outcomes. This study proposes a novel image processing methodology for detecting and classifying lung tumors from CT scan images, differentiating between malignant, benign, and normal cases. The method involves a multi-step approach including channel separation, thresholding, grayscale conversion, mask creation, and diaphragm removal. The unique aspect of this approach is the emphasis on the red channel for thresholding, based on histogram equalization, and the subsequent removal of the diaphragm to eliminate obstructions in the lung window. Post-processing steps involve binarization, complementation, hole filling, and border smoothing to enhance tumor detection. The methodology was evaluated using a comprehensive dataset, i.e., IQ-OTH/NCCD. Experimental results demonstrate high accuracy in tumor detection and classification, i.e., approximately 95% of images in each class are successfully recognised.  This research contributes to the advancement of computer-aided detection systems, offering a practical and efficient solution for improving diagnostic accuracy in lung cancer screening.
 
关键词
lung cancer,machine learning,Image Processing
报告人
PRABIRA KUMAR SETHY
ASSOCIATE PROFESSOR GURU GHASIDAS VISHWAVIDYALAYA; BILASPUR

稿件作者
PRABIRA KUMAR SETHY GURU GHASIDAS VISHWAVIDYALAYA; BILASPUR
PRAGATI PATHARIA Guru Ghasidas University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询