Which aerosol type dominate the impact of aerosols on ozone via changing photolysis rates?
编号:119 访问权限:仅限参会人 更新:2024-04-09 15:44:14 浏览:800次 张贴报告

报告开始:2024年05月18日 08:05(Asia/Shanghai)

报告时间:1min

所在会场:[SP] 张贴报告专场 [sp13] 主题13、气溶胶与大气环境

暂无文件

摘要
The impact of aerosols on ozone via influencing photolysis rates is a combined effect of absorbing aerosols (AA) and scattering aerosols (SA). However, AA and SA show different optical properties and influence photolysis rates differently, which then cause different impacts on ozone. Till now, the dominate factor is disconfirmed, which is largely due to the impact of SA on ozone not reaching to a consistent conclusion. In this study, the WRF-Chem model was implemented to simulate the air pollutants over the North China Plain (NCP). The impacts of AA and SA on ozone via influencing photolysis rates were quantitatively isolated and analyzed. Our results also demonstrated the decreasing effect of AA on ozone within planet boundary layer (PBL) which is consistent with the conclusions of previous studies. But for SA, it decreased the ozone chemical contribution (CHEM) near surface but increased which in the upper layers of PBL, that enlarge the ozone vertical gradients. In this case, more vertical exchanges of ozone would occur with the effect of vertical mixing motion of atmosphere, then the opposite CHEM variations were counteracted with each other and finally led to very slight changes in ozone within PBL. Thus, it can be summarized that AA dominate this impact of aerosols on ozone. Reducing AA could cause a general increase in ozone (ΔO3) over the NCP. Based on the aerosol levels of this case, ΔO3 would be seen over 86% of the areas in the NCP when reducing AA by 3/4 and ΔO3 was more significant in the megacities. Our study highlights the different relationships between ozone and aerosol types, which suggests that more attentions should be paid on aerosol types, especially AA, when making the synergetic control strategy of aerosols and ozone in China.
关键词
ozone,aerosol,WRF-Chem
报告人
高晋徽
副教授 成都信息工程大学

稿件作者
高晋徽 成都信息工程大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询