A Comprehensive Review of the Development of Land Use Regression Approaches for Modeling Spatiotemporal Variations of Ambient Air Pollution: A Perspective from 2011 to 2023
编号:1257 访问权限:仅限参会人 更新:2024-04-11 13:25:30 浏览:848次 口头报告

报告开始:2024年05月18日 17:40(Asia/Shanghai)

报告时间:15min

所在会场:[S5] 主题5、环境科学 [S5-2] 主题5、环境科学 专题5.10、专题5.9(18日下午,308)

暂无文件

摘要
Land use regression (LUR) models are widely used in epidemiological and environmental studies to estimate humans’ exposure to air pollution within urban areas. However, the early models, developed using linear regressions and data from fixed monitoring stations and passive sampling, were primarily designed to model traditional and criteria air pollutants and had limitations in capturing high-resolution spatiotemporal variations of air pollution. Over the past decade, there has been a notable development of multi-source observations from low-cost monitors, mobile monitoring, and satellites, in conjunction with the integration of advanced statistical methods and spatially and temporally dynamic predictors, which have facilitated significant expansion and advancement of LUR approaches. This paper reviews and synthesizes the recent advances in LUR approaches from the perspectives of the changes in air quality data acquisition, novel predictor variables, advances in model-developing approaches, improvements in validation methods, model transferability, and modeling software as reported in 155 LUR studies published between 2011 and 2023. We demonstrate that these developments have enabled LUR models to be developed for larger study areas and encompass a wider range of criteria and unregulated air pollutants. LUR models in the conventional spatial structure have been complemented by more complex spatiotemporal structures. Compared with linear models, advanced statistical methods yield better predictions when handling data with complex relationships and interactions. Finally, this study explores new developments, identifies potential pathways for further breakthroughs in LUR methodologies, and proposes future research directions. In this context, LUR approaches have the potential to make a significant contribution to future efforts to model the patterns of long- and short-term exposure of urban populations to air pollution.
关键词
air pollution; land use regression; multi-source observations; spatiotemporal modeling; linear regression; advanced statistical methods
报告人
马绪瀛
副教授 西安科技大学;Queensland University of Technology

稿件作者
马绪瀛 西安科技大学;Queensland University of Technology
邹滨 中南大学
MorawskaLidia Queensland University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询