A new robust feature selection method for paddy rice identification in cloudy and rainy areas
编号:3299 访问权限:仅限参会人 更新:2024-04-13 11:50:33 浏览:850次 快闪报告

报告开始:2024年05月19日 17:30(Asia/Shanghai)

报告时间:5min

所在会场:[S7] 主题7、遥感与地理信息科学 [S7-7] 主题7、遥感与地理信息科学 专题7.11(19日下午,301)

暂无文件

摘要
Timely and accurate mapping of rice cultivation is crucial for ensuring global food security and monitoring water usage. Feature selection methods play critical roles in identifying and mapping paddy rice as they reduce redundant information in feature subsets and improve computational efficiency. However, the optimal feature sets selected by existing feature selection methods still encounter challenges such as redundant information or local optimal, limiting their accuracy in rice identification. To address these issues, we developed a novel hierarchical clustering sequential forward selection (HCSFS) method to accurately determine the optimal feature set for paddy rice identification. HCSFS first employs hierarchical clustering to classify all features into different classes. Each independent feature class is filtered by the existing advanced sequential forward selection (SFS) method. Then, all the filtered features are merged to select the optimal feature set for rice identification. The proposed HCSFS method was tested on 8 common machine learning classifiers. The results show that, compared with existing feature selection methods, the feature subset obtained by HCSFS reduced redundant information and demonstrated superior performance. Specifically, the optimal feature set selected by HCSFS yielded the highest accurate rice map, with overall accuracy exceeding 0.95 and Kappa exceeding 0.83 across all classifiers. In addition, this paper found that in regions of southern China with cloudy and rainy weather and complex crop planting structures, the combination of the rice growth period images with LSWI, SWIR2, and RE2 can improve the accuracy of paddy rice identification or mapping. The case validated the applicability and efficiency of the HCSFS method in rice identification for regions with cloudy and rainy and implied the potential use in other similar or less complex regions.
关键词
Paddy rice; Sentinel-2; Mapping; Feature selection; HCSFS; Cloudy and rainy areas
报告人
段星印
硕士研究生 四川农业大学

稿件作者
吴小波 四川农业大学
段星印 四川农业大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询