Comparison of Soil Organic Carbon Prediction Methods and Accurate Mapping in Typical Black Soil Areas of Liaoning Province, Northeast China
编号:4567 访问权限:仅限参会人 更新:2024-04-16 14:56:39 浏览:902次 口头报告

报告开始:2024年05月19日 09:02(Asia/Shanghai)

报告时间:3min

所在会场:[S18] 主题18、土壤科学与环境健康 [S18-2] 主题18、土壤科学与环境健康 专题18.2、专题18.5、专题18.3(19日上午,4F观海厅2)

暂无文件

摘要
Soil organic carbon (SOC) plays an important role in terrestrial ecosystems. In this study, the typical black soil area of Tieling City, Liaoning Province, was used as the study area, and digital soil mapping (DSM) technology was utilized to estimate the SOC content in Tieling City. To improve the accuracy and reduce the uncertainty of predicting the organic carbon content of topsoil (0-20 cm) in the plains region by applying machine learning methods and adding remote sensing variables to the traditional predictors.Based on 2708 soil samples and the corresponding environmental covariates, the spatial distribution of organic carbon content in topsoil (0-20 cm) in Tieling City in 2021 was mapped for the first time using ordinary kriging, regression kriging and random forest models. The primary environmental variables influencing the variability of SOC content are mean annual temperature, altitude, mean annual precipitation and vegetation cover and the interaction of the two factors enhances the effect of a single factor on the spatial heterogeneity of SOC content. We then applied the RF model to predict the spatial distribution of SOC content in 1991 and 2021 based on natural environmental variables and remote sensing variables. In the past three decades, the SOC content has always been higher in the eastern region than in the western region. The SOC content in the eastern and northern part of the study area showed an increasing trend with an area of 8245.8522 km2, while the SOC content in the central and southern part of the study area showed a decreasing trend with an area of 4717.089km2 and average organic carbon content increased from 21.88g/kg to 22.90g/kg, compared with 2021. Our high-resolution and high-precision estimation of the spatial distribution of SOC can provide a basis and reference for regional soil quality improvement and ecosystem optimization.
 
关键词
Soil organic carbon; Digital soil mapping; Dynamic changes; spatial heterogeneity
报告人
邵天意
博士研究生 沈阳农业大学

稿件作者
邵天意 沈阳农业大学
钱凤魁 沈阳农业大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询