基于改进(MGWR)降尺度方法的西南高原峡谷地区高分辨率栅格降水数据重建
编号:723 访问权限:仅限参会人 更新:2024-04-16 09:30:36 浏览:866次 口头报告

报告开始:2024年05月19日 15:38(Asia/Shanghai)

报告时间:7min

所在会场:[S11] 主题11、地表过程与地貌 [S11-5] 主题11、地表过程与地貌 专题11.5、专题11.6(19日下午,204)

暂无文件

摘要
High-spatiotemporal-resolution rainfall data are crucial for investigating local terrestrial water cycles. Although remote-sensing satellite precipitation products effectively reproduces spatial patterns of rainfall, it suffers from low spatial resolution. To overcome such limitations, a two-step downscaling approach is proposed here, primarily involving correction followed by downscaling. First, 80% of the meteorological-station data is utilized to calibrate the original Global Precipitation Measurement (GPM) data, enhancing the correlation between GPM and station data. Subsequently, utilizing elevation, slope, aspect, NDVI, wind direction, water vapor, and land surface temperatur, as well as slope and aspect correction factors, as independent variables, multiscale geographically weighted regression (MGWR) and temporal lag MGWR (TL-MGWR) models were constructed. We selected the model with higher accuracy on a monthly basis, and thereby obtaining higher-precision rainfall data. Through the aforementioned steps, downscaled monthly and daily precipitation data for the study area in 2022 at a spatial resolution of 0.01° were obtained.
Our findings indicate that selectively employing suitable MGWR or TL-MGWR models on a monthly basis can effectively downscale monthly GPM rainfall data in the study area. A consideration of the lag effects of NDVI between April‒June and October‒December improved the downscaling performance of the MGWR model. This downscaling process preserved the spatial distribution of the original GPM while enhancing the spatial resolution and had lower MAE , RMSE values, as well as exhibited smaller biases. The downscaled (original) monthly precipitation data exhibited a correlation of 0.94 (0.768), with an MAE of 16.233 mm/month, RMSE of 27.106 mm/month, and bias of −0.043. Similar enhancement was likewise noted in daily precipitation, displaying a correlation coefficient of 0.863 (0.318) for downscaled (original) data, and a RMSE of 3.209 mm/day, MAE of 1.082 mm/day, and bias of −0.06. In summary, the data after downscaling, both for monthly and daily datasets, was markedly improved in accuracy. The proposed downscaling method is applicable for reconstructing high-resolution grid data at monthly and daily temporal scales in the complex terrain of the southwest China highland canyon area.

 
关键词
GPM; Downscaling; MGWR; Temporal lag; Calibration; Meteorological stations; Southwest China
报告人
王莉红
硕士研究生 西南大学

稿件作者
王莉红 西南大学
李月臣 西南大学
甘宇诗 西南大学
赵龙 西南大学
樊磊 西南大学
秦伟 中国水利水电科学研究院
丁琳 中国水利水电科学研究院
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询