Prediction of Physical Field in Blast Furnace Based on Mechanism Data Driving: Research on Operation and Physical Property Parameters
编号:7 访问权限:仅限参会人 更新:2024-04-09 20:50:43 浏览:208次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Acquiring insights into the effects of variations in operational parameters and physical characteristics on the internal dynamics of blast furnaces with rapidity and precision holds substantial importance for enhancing energy efficiency and diminishing operational expenditures. This research introduces a data-driven strategy for the prompt prediction of complex combustion characteristics within the furnace, crucial to the operational and material parameters of BFs. The strategy relies on a carefully constructed database employing the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM). Formulated through a comprehensive full-factorial approach, this database incorporates 40 simulation scenarios encompassing key variables such as flow field, temperature distribution, gas concentration, and cohesive zone height. To investigate these phenomena, the study employs a machine learning (ML) model that effectively combines random forest regression and artificial neural networks, selected for their high predictive accuracy. The results demonstrate the model exhibits high accuracy in predicting key furnace phenomena, including temperature profiles, gas species concentrations, and the extent of the cohesive zone. The efficacy of ML predictions is further demonstrated by successful extrapolation and comparison of furnace phenomena in five new scenarios beyond the original database, achieving comprehensive virtualization. Impressively, the method's response time is approximately 864,000 times faster than that of conventional CFD-DEM simulations, while maintaining comparable accuracy. This predictive model represents a significant advancement in optimizing furnace responses to operational and material parameter variations efficiently, both in terms of time and cost, Providing a new perspective on blast furnace prediction and control.
 
关键词
Blast furnace process; CFD-DEM; Machine learning; Hybrid data-driven; Random Forest
报告人
曹生福
江西理工大学

稿件作者
曹生福 江西理工大学
鄂殿玉 江西理工大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月31日

    2024

    06月03日

    2024

  • 06月03日 2024

    摘要截稿日期

  • 06月03日 2024

    初稿截稿日期

  • 06月03日 2024

    注册截止日期

主办单位
中国力学学会
计算力学专业委员会
颗粒材料计算力学专业组
承办单位
河海大学
大连理工大学
中国颗粒学会
江苏省力学学会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询