In situ high-pressure wide-angle XPCS: A versatile tool probing atomic dynamics of extreme condition matter
编号:223 访问权限:仅限参会人 更新:2024-04-23 01:10:58 浏览:112次 特邀报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Relaxation dynamics, as a key to understand glass formation and glassy properties, remains an elusive and challenging issue in condensed matter physics. In this presentation, I will introduce our recent development of in situ high-pressure synchrotron high-energy x-ray photon correlation spectroscopy, which enable us to probe the atomic-scale relaxation dynamics of a cerium-based metallic glass during compression. Although the sample density continuously increases, the collective atomic motion initially slows down as generally expected and then counter-intuitively accelerates with further compression (density increase), showing an unusual non-monotonic pressure-induced steady relaxation dynamics crossover at ~3 GPa. Furthermore, by combining in situ high-pressure synchrotron x-ray diffraction, the relaxation dynamics anomaly is evidenced to closely correlate with the dramatic changes in local atomic structures during compression, rather than monotonically scaling with either sample density or overall stress level. These findings could provide new insight into relaxation dynamics and their relationship with local atomic structures of glasses. It is worth emphasizing that the technique developed and demonstrated in this work will strongly benefit from the advent of diffraction-limited synchrotron sources with largely enhanced coherent x-ray flux, allowing to dramatically extend the accessible dynamical range using high-energy x-ray.
关键词
High pressure, glass, dynamics, XPCS
报告人
Qiaoshi Zeng
Staff Scientist Center for High Pressure Science & Technology Advanced Research

稿件作者
Qiaoshi Zeng Center for High Pressure Science & Technology Advanced Research
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月13日

    2024

    05月17日

    2024

  • 03月31日 2024

    注册截止日期

  • 04月15日 2024

    摘要截稿日期

主办单位
冲击波物理与爆轰物理全国重点实验室
浙江大学物理学院
中国核学会脉冲功率技术及其应用分会
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询