81 / 2024-09-27 16:52:35
Improving the thermal cycling-CMAS lifetime of TBCs by adjusting porosity
Keywords: Thermal barrier coatings; Thermal cycling-CMAS lifetime; Failure behavior; porosity
摘要录用
Wenkang Zhang / 华东理工大学
Weize Wang / 华东理工大学
Kaibin Li / 华东理工大学
Yangguang Liu / 华东理工大学
Atmospheric plasma spraying (APS) was used to fabricate 8YSZ (6-8 wt% Y2O3-ZrO2) series coatings with different spraying parameters. Effects of spraying power and powder feed distance on the microstructure, performance and CMAS (calcium-magnesium-alumino-silicate) corrosion resistance of thermal barrier coatings (TBCs) is investigated. The application of coatings at higher spraying powers resulted in enhanced thermal conductivity, hardness, and elastic modulus. It is noteworthy that coatings sprayed at 39-40 kW displayed the highest thermal cycling-CMAS lifetime and CMAS penetration depth. Additionally, a series of embedded micro-aggregated particles (EMAP) coatings was created using different powder feed distances. The porosity of EMAP coatings was significantly higher than that of conventional YSZ coatings, with the EMAP coating produced at a 30 mm powder feed distance showing the highest porosity—approximately 2.5 times greater than that of traditional YSZ coatings. Compared to conventional YSZ coatings, the thermal cycling-CMAS lifetime for the coatings with 30 mm and 40 mm powder feed distances improved by 30% and 55%, respectively. This enhancement is attributed to the increased porosity, which boosts the strain tolerance of the coatings. However, the higher porosity also facilitates CMAS penetration, accelerating the corrosion rate. Therefore, optimizing porosity within the coatings is crucial for enhancing the lifetime and CMAS resistance of TBCs.

 
重要日期
  • 会议日期

    10月18日

    2024

    10月20日

    2024

  • 10月17日 2024

    报告提交截止日期

  • 10月20日 2024

    注册截止日期

  • 11月18日 2024

    初稿截稿日期

主办单位
中国机械工程学会表面工程分会
承办单位
大连理工大学
山东理工大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询