Non-saturating magnetoresistance in mosaic-like graphene
编号:120 访问权限:仅限参会人 更新:2024-10-13 22:30:34 浏览:589次 特邀报告

报告开始:2024年10月19日 15:15(Asia/Shanghai)

报告时间:20min

所在会场:[S1] Surface Micro-Nano Fabrication and Additive Manufacturing [S1B] Session 1B

暂无文件

摘要
It was recently found that disordered graphen is characterized by a non-saturating linear magnetoresistance with increasing value as the temperature rises. This effect can be used for the development of the magnetic field sensors. The structural, electrical properties and magnetoresistance of disordered mosaic-like graphen are presented in this study.
Graphen was synthesized by Chemical Vapor Deposition method on Cu foil at the temperature of 1000 °C in a mixture of Ar (90.9 %), H2 (9 %) and CH4 (0.1 %). A standard technique was used to transfer graphene layers onto glass substrates. The characterization of the structure of graphen layers was carried out by means of Raman spectroscopy with laser source with λ=532 nm. The measurements of the dependences of the resistance on temperature and magnetic fields (R(T) and R(B)) of the graphen layers were done in the temperature range 2‑300 K and in magnetic field up to 8 T.
According to the analysis of Raman spectra, synthesized graphen is characterized by mosaic-like structure with different thickness varied from 1 to 6 layers. It was found that the ratio between the intensities of 2D and G lines (I2D/IG) was varied in the range of ~ 1.98‑3.37 in different points of the samples. Besides G and 2D peaks D, D', and D + D' lines (with high intensity of the D line) were registered indicating thus inhomogeneity and defectness of the samples. Negative magnetoresistance (MR) with crossover to positive one was observed in the temperature range of 2‑50 K at the inreasing of the magnetic field. As a result of analysis of R(B) curves at T > 50 K it was found that the quadratic positive MR dependence (R ~ B2) for the low magnetic fields was changed to linear MR (R ~ B) as the induction of the magnetic field B was increased. Negative MR is induced by weak localization effects. Positive MR can be explained by the dominating of the defects induced charge carriers scattering mechanism.

Keywords: graphen, magnetoresistance, Raman spectroscopy, inhomogeneity, defect
关键词
暂无
报告人
Vitaly Ksenevich
Belarusian State University, Belarus

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月18日

    2024

    10月20日

    2024

  • 10月17日 2024

    报告提交截止日期

  • 10月20日 2024

    注册截止日期

  • 11月18日 2024

    初稿截稿日期

主办单位
中国机械工程学会表面工程分会
承办单位
大连理工大学
山东理工大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询