The 3D-GAN and 3D-CNN-U-Net in the prediction of shrinkage stresses and displacements in monolithic concrete slabs on base
编号:121 访问权限:仅限参会人 更新:2024-10-13 22:15:34 浏览:616次 特邀报告

报告开始:2024年10月19日 10:25(Asia/Shanghai)

报告时间:20min

所在会场:[S1] Surface Micro-Nano Fabrication and Additive Manufacturing [S1A] Session 1A

暂无文件

摘要
The purpose of this study is to demonstrate the capabilities of convolutional and generative adversarial networks in problems related to mechanics, in particular, in the design of monolithic slabs on a base. In this paper, for the first time, an approach based on the use of a voxel description of the object under study is proposed. In a number of cases at the design stage, the presence of technological holes of various shapes is envisaged, the slab surface may have a complex geometric shape. Determination of the stress-strain state in a closed form in such cases is very labor-intensive or unattainable. The paper highlights the promising potential of 3D Convolutional and 3D Generative adversarial neural networks in predicting the magnitudes of shrinkage stresses and displacements. The ultimate goal of the research is to create a slab design method that combines the advantages of theoretical models, finite element methods, and biosimilar technologies.
Conference topics reveals:
1.      Possibility of convergence of mechanics and neurotechnology.
2.      The possibility of using “soft computing” with the application of deep learning in design-related tasks.
3.      Advantages of convolutional neural networks (CNN), generative neural networks (GNN) in predicting forced displacements and stress-state condition (SSC) in slabs on the base when there is a deficit (or absence) of initial data on SSC in the zone of technological holes.
4.      The method of slab database creation, the method of data coding for neural networks training with the subsequent integration with already available and planned data of subsequent stages.

Keywords: Convolutional neural networks, generative adversarial neural networks, neurons, slabs on base, voxels, shrinkage.
关键词
暂无
报告人
Zheltkovich Andrei
Brest State Technical University, Belarus

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月18日

    2024

    10月20日

    2024

  • 10月17日 2024

    报告提交截止日期

  • 10月20日 2024

    注册截止日期

  • 11月18日 2024

    初稿截稿日期

主办单位
中国机械工程学会表面工程分会
承办单位
大连理工大学
山东理工大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询