Generative design of surface texture for hydrodynamic lubrication based on multi-set MMV topology optimization Approach
编号:18 访问权限:仅限参会人 更新:2024-10-14 11:01:48 浏览:617次 口头报告

报告开始:2024年10月19日 17:25(Asia/Shanghai)

报告时间:15min

所在会场:[S4] Thermal/Cold Spray Coating Technologies [S4A] Session 4A

暂无文件

摘要
Surface texture design is crucial for enhancing the tribological performance in applications involving sliding surfaces. This research presents a generative design approach for creating optimal surface textures that maximize hydrodynamic lubrication efficiency. By integrating a Moving Morphable Void (MMV)-based explicit topology optimization framework, we harness the power of computational algorithms to explore a vast design space and generate innovative texture patterns that enhance the load-carrying capacity (LCC) of hydrodynamic bearings. The methodology introduces multi-sets of voids to represent diverse film thickness profiles within the texture, allowing for a high degree of design flexibility. The explicit geometric information provided by the MMV approach ensures compatibility with CAD systems, facilitating the precise and efficient translation of optimized designs into manufacturable surfaces. To demonstrate the effectiveness of our generative design strategy, we provide a suite of numerical simulations that illustrate the performance benefits of the proposed textures. These are complemented by experimental studies that validate the theoretical findings and confirm the practical viability of the optimized surface textures.
关键词
Surface texture,Generative design,Moving Morphable Void (MMV),Explicit topology optimization,Multi-film thickness
报告人
Bao Zhu
副教授 Dalian University of Technology, China

稿件作者
朱 宝 大连理工大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月18日

    2024

    10月20日

    2024

  • 10月17日 2024

    报告提交截止日期

  • 10月20日 2024

    注册截止日期

  • 11月18日 2024

    初稿截稿日期

主办单位
中国机械工程学会表面工程分会
承办单位
大连理工大学
山东理工大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询