Laser-based fabrication of superwetting non-metallic materials: fabrication technique, principles, and applications
编号:58 访问权限:仅限参会人 更新:2024-10-14 11:01:55 浏览:563次 特邀报告

报告开始:2024年10月19日 15:55(Asia/Shanghai)

报告时间:20min

所在会场:[S1] Surface Micro-Nano Fabrication and Additive Manufacturing [S1B] Session 1B

暂无文件

摘要
Laser surface modification is an effective method for fabrication of superwetting surfaces, which has attracted extensive attention due to its high precision, non-contact characteristic with materials, excellent controllability and minimized pollution to the environment. However, most of the current laser surface modification methods exhibit disadvantages including low processing efficiency and high production cost. Some laser-based methods require the usage of toxic fluorine-containing reagents for wettability control, which has limited the application in biomedicine industries. Therefore, development of facile and environmental-friendly laser-based method for preparation of superwetting surface is conducive to the practical application of the surface engineering community. In this work, a nanosecond laser-silicone oil-heat treatment (LSH) composite process was developed to fabricate superwetting surfaces on various non-metallic materials (zirconia ceramic, silicon carbide and glass) with enhanced surface functionalities. Nanosecond laser texturing was firstly applied to fabricate periodic micro/nanostructures on non-metallic materials, and silicone oil-assisted heat treatment was utilized to change surface chemistry for wettability control. The surface physicochemical properties of the LSH surface were evaluated by diverse characterization techniques including SEM, CLSM, EDS and XPS, and the corresponding applications of the LSH surface were demonstrated. The developed LSH technique could achieve the wettability transition from superhydrophilicity to superhydrophobicity on the non-metallic materials within only 5~10 minutes using the silicone oil-assisted heat treatment method while maintaining the processing efficiency of laser surface texturing, and thus the fabrication efficiency of superwetting surfaces was significantly increased by the LSH process. In the meantime, the silicone oil used in this work is non-toxic, and thus the innovative LSH process could provide a key avenue for the applications of superwetting surface in diverse engineering fields including aerospace and biomedicine industries.
 
关键词
Non-metallic materials,superwetting surface,laser-based fabrication,physicochemical properties
报告人
Qinghua Wang
Associate Professor Southeast University, China

稿件作者
Qinghua Wang Southeast University
Chao Liu Southeast University
Jiajun Fu Southeast University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月18日

    2024

    10月20日

    2024

  • 10月17日 2024

    报告提交截止日期

  • 10月20日 2024

    注册截止日期

  • 11月18日 2024

    初稿截稿日期

主办单位
中国机械工程学会表面工程分会
承办单位
大连理工大学
山东理工大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询