Extreme high accuracy prediction and design of Fe-C-Cr-Mn-Si steel using machine learning
编号:73 访问权限:仅限参会人 更新:2024-10-13 21:33:34 浏览:743次 口头报告

报告开始:2024年10月19日 17:55(Asia/Shanghai)

报告时间:15min

所在会场:[S4] Thermal/Cold Spray Coating Technologies [S4A] Session 4A

暂无文件

摘要
Fe-C-Cr-Mn-Si steel plays a crucial role in the iron industry, and their components significantly influence microhardness and lifespan of equipment. A data-driven model combining machine learning (ML) and firefly optimization algorithm (FA) is proposed to predict components of Fe-C-Cr-Mn-Si steel. Conditional generative adversarial networks (CGANs) and solid solution strengthening theory are introduced to increase prediction accuracy with the limited data set. Ten common ML models were constructed to predict the microhardness of the steel. Three alloys were fabricated using cladding to validate the predict accuracy of the models. It is observed that the trained support vector regression (SVR) model demonstrated the highest precision in predicting microhardness. The coefficient of determination (R2) and root mean square error (RMSE) achieved 0.89 and 0.36 through the ten-fold cross-validation and Bayesian optimization method, respectively. The experimental validation revealed a maximum error of 2.09% between the predicted and experimental values. The investigation provides a valuable method to expedite design of Fe-C-Cr-Mn-Si steel with extreme high accuracy.
关键词
Fe-C-Cr-Mn-Si steel; Machine learning; Conditional generative adversarial networks; Solid solution strengthening; Firefly optimization algorithm
报告人
Hao Wu
研究生 Ningbo University, China

稿件作者
浩 吴 宁波大学
新坤 所 宁波大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月18日

    2024

    10月20日

    2024

  • 10月17日 2024

    报告提交截止日期

  • 10月20日 2024

    注册截止日期

  • 11月18日 2024

    初稿截稿日期

主办单位
中国机械工程学会表面工程分会
承办单位
大连理工大学
山东理工大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询