57 / 2024-07-26 16:32:00
Distributed Photovoltaic Power Prediction Based on Spatiotemporal Attention Convolutional Networks under Weather-free Conditions
Distributed Photovoltaics;Power Forecasting; Spatial-Time Attention Mechanism; Spatiotemporal Graph Convolutional Network;Weather-free Conditions
终稿
Xiaojin Peng / Wuhan University of Technology
Bingyang Luo / Wuhan University of Technology
Guorong Zhu / Wuhan University of Technology
With the massive integration of distributed photovoltaic (PV) systems into the power grid, accurate forecasting of distributed PV power generation is of great significance for the stableoperationof power systems.Existing methods often neglect the spatiotemporal correlations among distributedPVsystems,making it difficult to effectively utilize spatiotemporal featureinformationtoimprovepower forecasting accuracy. Considering the strong spatiotemporal correlations among distributed PVoutputs and the difficulty in obtaining meteorological data, thispaperproposesadistributedPVpower forecasting method based on Spatial-Time-Attention, Graph Convolutional Network (GCN), and Temporal Convolutional Network (TCN). This method achieves accurate PV power prediction under weather-free conditions based solely on historicalpowerdata.First, thespatial-timeattentionmechanism is used to extract the spatiotemporal dependencies of the distributedPVclusteroutput.Next,GCNandTCNareutilizedto construct a spatiotemporal graph convolutional network for prediction training, obtaining the forecastingresults.Finally, a simulationisconductedbasedonrealdatafromadistributedPV powerplant inacertainregionofChina.Thecasestudyresults showthat theproposedmodelhashigheraccuracycomparedto traditionaldeeplearningmodels.
重要日期
  • 会议日期

    11月06日

    2024

    11月08日

    2024

  • 09月15日 2024

    初稿截稿日期

  • 11月08日 2024

    注册截止日期

主办单位
Huazhong University of Science and Technology
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询