Research on Partial Discharge Image Recognition of Onboard Cable Terminal Based on Generative Adversarial Network
编号:99 访问权限:仅限参会人 更新:2024-08-15 10:50:13 浏览:144次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
This paper addresses the challenges of difficult data acquisition and limited samples of partial discharge (PD) data from onboard cable terminals, which affect the accuracy of insulation defect classification. We propose an enhancement method for PD data from onboard cable terminals based on Generative Adversarial Network (GAN). Using Boundary Equilibrium GAN (BEGAN), Deep Convolutional GAN (DCGAN), and Wasserstein GAN with Gradient Penalty (WGAN-GP) to learn from PD image samples of onboard cable terminals, we evaluate the image generation quality of the three networks. The results show that all three networks have good generation effects on the PD images. We utilize BEGAN, DCGAN, and WGAN-GP to enhance the few-shot PD image dataset of onboard cable terminals and conduct classification training on the enhanced dataset. The results indicate that the enhanced datasets from all three generative networks can improve the accuracy of image classification, with DCGAN demonstrating the best enhancement effect.
 
关键词
onboard cable terminal,partial discharge,GAN,image recognition,few-shot
报告人
Jiang Weihui
doctoral student Southwest Jiaotong University

稿件作者
Lijun Zhou Southwest Jiaotong University
Hanqing Ma Southwest Jiaotong University
Weihui Jiang Southwest Jiaotong University
Zhengjia Li Hunan Hengxin Electric Co., Ltd.
Gangyang Zhu Hunan Hengxin Electric Co., Ltd.
Peng Xiong Hunan Hengxin Electric Co., Ltd.
Shuguang He Hunan Hengxin Electric Co., Ltd.
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月06日

    2024

    11月08日

    2024

  • 09月15日 2024

    初稿截稿日期

  • 11月08日 2024

    注册截止日期

主办单位
Huazhong University of Science and Technology
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询