Sea level prediction in the Kuroshio Extension region based on ConvLSTM
编号:1123 访问权限:仅限参会人 更新:2024-12-31 23:56:31 浏览:185次 口头报告

报告开始:2025年01月16日 14:45(Asia/Shanghai)

报告时间:15min

所在会场:[S23] Session 23-Sea Level Rise: Understanding, Observing, and Modelling [S23-2] Sea Level Rise: Understanding, Observing, and Modelling

暂无文件

摘要
This study utilizes satellite altimetry observations and employs the ConvLSTM (Convolutional Long Short-Term Memory) model to predict sea level anomaly (SLA) in the Kuroshio Extension (KE) region. The ConvLSTM involves both spatial features and spatiotemporal relationships of data, enabling rapid and accurate predictions. The results demonstrate that the ConvLSTM performs well and be effective in predicting SLA fields in the KE region. The regional average Root Mean Square Error (RMSE) increases rapidly in the first 30 days lead time but maintains relatively consistent prediction error levels beyond 30 days. The performance of ConvLSTM shows spatial difference, with higher errors located in regions with strong ocean fronts and energetic eddy activities. Analyses indicate that the ConvLSTM has successfully captured the dynamics of Rossby waves, resulting in favorable prediction outcomes. This study provides valuable insights into predicting oceanic physical quantities using the ConvLSTM model.
关键词
sea level anomaly prediction, Kuroshio Extension, deep learning, ConvLSTM
报告人
Huang Duotian
PhD Hohai University

稿件作者
Huang Duotian Hohai University
Xuhua Cheng Hohai University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询