Lagrangian Versus Eulerian Spectral Estimates of Surface Kinetic Energy Over the Global Ocean
编号:1335 访问权限:仅限参会人 更新:2024-10-14 15:31:06 浏览:177次 张贴报告

报告开始:2025年01月16日 19:35(Asia/Shanghai)

报告时间:15min

所在会场:[S46] Session 46-Oceanic Mesoscale and Submesoscale Processes: Characteristics, Dynamics & Parameterizations [S46-P] Oceanic Mesoscale and Submesoscale Processes: Characteristics, Dynamics & Parameterizations

暂无文件

摘要
In this study, we conducted a novel massive Lagrangian simulation experiment based on a global 1/48° tide-resolving numerical simulation of the ocean circulation. This first-time twin experiment enables a comparison between Eulerian (fixed-point) and Lagrangian (along-flow) estimates of kinetic energy (KE) across the global ocean, and the quantification of systematic differences between both types of estimations. This comparison represents an important step forward for the mapping of upper ocean high-frequency variability from Lagrangian observations of the Global Drifter Program. Eulerian KE rotary frequency spectra and band-integrated energy levels (e.g., tidal and near-inertial) serve as references and are compared to Lagrangian estimates. Our analysis reveals that, except for the near-inertial band, Lagrangian velocity spectra are systematically smoother, for example, with wider and lower spectral peaks compared to Eulerian counterparts. On average, Lagrangian KE levels derived from spectral band integrations tend to underestimate Eulerian KE levels at low-frequency and tidal bands, especially in regions with strong low-frequency KE. Better agreement between Lagrangian and Eulerian low-frequency and tidal KE levels is generally found in regions with weak low-frequency KE and/or convergent surface circulation, where Lagrangian particles tend to accumulate. Conversely, Lagrangian and Eulerian near-inertial spectra and energy levels are comparable. Our results demonstrate that Lagrangian estimates may provide a distorted view of low-frequency and tidal variance. To accurately map near-surface velocity climatology at these frequencies from drifter database, conversion methods accounting for the Lagrangian bias need to be developed.
关键词
Lagrangian-Eulerian comparison,internal tide,near-inertial waves,kinetic energy,global ocean
报告人
Xinwen Zhang
PhD Sun Yat-Sen University

稿件作者
Xinwen Zhang Sun Yat-Sen University
Xiaolong Yu Sun Yat Sen University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询