Enhancing near-shore water quality prediction with big data and AI
编号:1489 访问权限:仅限参会人 更新:2024-12-31 21:28:29 浏览:220次 拓展类型1

报告开始:2025年01月16日 08:45(Asia/Shanghai)

报告时间:15min

所在会场:[S18] Session 18-The River-Estuary-Bay Continuum: Unveiling the Carbon and Nitrogen Cycles Under Global Change [S18-1] The River-Estuary-Bay Continuum: Unveiling the Carbon and Nitrogen Cycles Under Global Change

暂无文件

摘要
Near-shore water quality is influenced by complex terrestrial and oceanic interactions, making accurate prediction challenging. This presentation explores how big data and machine learning enhance water quality predictions in human-impacted bays. Key cases include pollutant flux estimation from unmonitored watersheds, nowcasting with in-situ monitoring, and spatiotemporal reconstruction of multi-source data. Future research directions will also be discussed.
 
关键词
big data, AI, machine learning, water quality, bay, near-shore, model
报告人
Yi Zheng
Professor Southern University of Science and Technology

稿件作者
Yi Zheng 南方科技大学环境科学与工程学院 / Southern University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询