Algal–prokaryotic associations maintain coral larval development under nitrate enrichments
编号:1540 访问权限:仅限参会人 更新:2024-12-31 18:05:08 浏览:213次 口头报告

报告开始:2025年01月14日 10:55(Asia/Shanghai)

报告时间:15min

所在会场:[S13] Session 13-Coastal Environmental Ecology Under Anthropogenic Activities and Natural Changes [S13-1] Coastal Environmental Ecology Under Anthropogenic Activities and Natural Changes

暂无文件

摘要

Coral meta-organisms consist of the coral, and its associated Symbiodiniaceae (dinoflagellate algae), bacteria, and other microbes. Corals can acquire photosynthates from Symbiodiniaceae, whilst Symbiodiniaceae uses metabolites from corals. Prokaryotic microbes provide Symbiodiniaceae with nutrients and support the resilience of corals as meta-organisms. Eutrophication is a major cause of coral reef degradation; however, its effects on the transcriptomic response of coral meta-organisms remain unclear, particularly for prokaryotic microbes associated with corals in the larval stage. To understand acclimation of the coral meta-organism to elevated nitrate conditions, we analyzed the physiological and transcriptomic responses of Pocillopora damicornis larvae, an ecologically important scleractinian coral, after 5 days of exposure to elevated nitrate levels (5, 10, 20, and 40 µM). The major differentially expressed transcripts in coral, Symbiodiniaceae, and prokaryotic microbes included those related to development, stress response, and transport. The development of Symbiodiniaceae was not affected in the 5 and 20 µM groups but was downregulated in the 10 and 40 µM groups. In contrast, prokaryotic microbe development was upregulated in the 10 and 40 µM groups and downregulated in the 5 and 20 µM groups. Meanwhile, coral larval development was less downregulated in the 10 and 40 µM groups than in the 5 and 20 µM groups. In addition, multiple larval, Symbiodiniaceae, and prokaryotic transcripts were significantly correlated with each other. The core transcripts in correlation networks were related to development, nutrient metabolism, and transport. A generalized linear mixed model, using least absolute shrinkage and selection operator, demonstrated that the Symbiodiniaceae could both benefit and cost coral larval development. Furthermore, the most significantly correlated prokaryotic transcripts maintained negative correlations with the physiological functions of Symbiodiniaceae. Results suggested that Symbiodiniaceae tended to retain more nutrients under elevated nitrate concentrations, thereby shifting the coral-algal association from mutualism towards parasitism. Prokaryotic microbes provided Symbiodiniaceae with essential nutrients and may control Symbiodiniaceae growth through competition, whereby prokaryotes can also restore coral larval development inhibited by Symbiodiniaceae overgrowth.

关键词
coral larvae, coral meta-organism associations, coral reef microbiome, nitrogen pollution
报告人
Haoya Tong
Postdoctor The University of Hong Kong

稿件作者
Haoya Tong The University of Hong Kong
Pei-Yuan Qian The Hong Kong University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询