Predictability of Southern Ocean dissolved oxygen: Bayesian1 vs. deterministic approach to Forecasting2
编号:398 访问权限:仅限参会人 更新:2024-12-31 20:09:59 浏览:186次 张贴报告

报告开始:2025年01月16日 17:05(Asia/Shanghai)

报告时间:15min

所在会场:[S15] Session 15-Ocean Deoxygenation: Drivers, Trends, and Biogeochemical-Ecosystem Impacts [S15-P] Ocean Deoxygenation: Drivers, Trends, and Biogeochemical-Ecosystem Impacts

暂无文件

摘要
Oxygen plays a critical role in the health of marine ecosystems. As oceanic O2 concentration decreases to hypoxic levels, marine organisms' habitability decreases rapidly. However, identifying the physical patterns driving this reduction in dissolved oxygen remains challenging. This study employs a Bayesian Neural Network (BNN) to analyze the uncertainty in dissolved oxygen forecasts. The method's significance lies in its ability to assess oxygen forecasts' certainty with evolving physical dynamics. The BNN model outperforms traditional linear regression and persistence methods, particularly under changing climate conditions, where it captures increased uncertainty, as quantified by Bayesian entropy. Our approach leverages three Explainable AI (XAI) techniques—Integrated Gradients, Gradient SHAP, and DeepLIFT—to provide meaningful interpretations of 2- and 8-year forecasts. The XAI analysis reveals that buoyancy frequency is a critical predictor for short-term forecasts across the North Atlantic Deep Water (NADW), Upper Circumpolar Deep Water (UCDW), and Lower Circumpolar Deep Water (LCDW) masses while mixing processes and salinity become more influential over longer timescales.
关键词
Bayesian approach, dissolved oxygen
报告人
Gian Giacomo Navarra
Postdoctor Princeton University

稿件作者
Gian Giacomo Navarra Princeton University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询