150 / 2024-08-31 18:16:32
Demagnetization Fault Diagnosis Based on Feature Extraction and Stacking Ensemble Learning for Permanent Magnet Synchronous Generator
permanent magnet synchronous generator,demagnetization fault,feature extraction,ensemble learning
终稿
ZhangSichao / Xi’an Jiaotong University
ChenYu / Xi'an Jiaotong University
LiangFeng / Xi'an Jiaotong University
DuSiyu / Xi'an Jiaotong University
ShahbazNadeem / Xi’an Jiaotong University
ZhaoShouwang / Xi’an Jiaotong University
LiChong / Xi’an Thermal Power Research Institute Co. Ltd
DengWei / Xi’an Thermal Power Research Institute Co. Ltd
ZhaoYong / Xi’an Thermal Power Research Institute Co. Ltd
During the operation of a permanent magnet wind turbine, magnet demagnetization failure may occur, which directly affects the regular operation of the wind turbine and adversely affects wind power generation. This paper proposes a demagnetization fault diagnosis method for permanent magnet generators based on feature extraction and stacking integrated learning. A permanent magnet generator with a power of 25 kW was used to conduct a demagnetization fault simulation experiment. Collect the current signal of the generator and extract features such as time domain, frequency domain, entropy, and singular value. The different extracted features are trained through the Stacking integrated learning framework to realize pattern recognition of demagnetization faults and determine the operating status of the generator, thereby realizing demagnetization fault diagnosis of permanent magnet generators.
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询