175 / 2024-09-01 11:19:54
Data synthesis using dual discriminator conditional generative adversarial networks
Rolling bearings, Fault diagnosis, Generative adversarial network.
全文被拒
ShuaiDing / Anhui Sanlian University
Diagnosis of rolling bearings plays an important role in condition monitoring of industrial rotating machinery. In many actual applications, rolling bearings work in normal state at most time and faulty samples are difficult to be collected. Thus, it is easy to arise problem of imbalanced dataset which restricts accuracy and stability of fault diagnosis. Generative adversarial networks (GANs) have been proved to be effective to produce artificial data that are alike real data, and have been widely used in image fields. Data synthesis using deep generative model provide a promising methodology for imbalanced fault diagnosis of machinery. In this paper, we propose a novel framework named dual discriminator conditional generative adversarial networks (D2CGANs) to learn from sensor signals on multimodal fault samples and automatically synthesize realistic one-dimensional signals of each fault.
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询