193 / 2024-09-01 19:39:50
Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection
Gear, Fault diagnosis, Generative adversarial network.I.I
全文被拒
丽蓉许 / 安徽大学
De-noising and enhancement of the weak fault signature from the noisy signal are crucial for fault diagnosis, as features are often very weak and masked by the background noise. Deconvolution methods have a significant advantage in counteracting the influence of the transmission path and enhancing the fault impulses. However, the performance of traditional deconvolution methods is greatly affected by some limitations, which restrict the application range. Therefore, this paper proposes a new deconvolution method, named sparse maximum harmonics-noise-ratio deconvolution (SMHD), that employs a novel index, the harmonics-to-noise ratio (HNR), to be the objective function for iteratively choosing the optimum filter coefficients to maximize HNR. SMHD is designed to enhance latent periodic impulse faults from heavy noise signals by calculating the HNR to estimate the period. A sparse factor is utilized to further suppress the noise and improve the signal-to-noise ratio of the filtered signal in every iteration step
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询