212 / 2024-09-02 10:05:01
Application of ResNet CNN Model in Rolling Bearing Fault Diagnosis
Rolling bearing, Fault diagnosis, ResNet CNN, Random forest.
全文被拒
WangYi / AHJZU
The diagnosis of rolling bearing faults is crucial for ensuring the safe operation of rotating machinery equipment. Based on the open-source dataset provided by Case Western Reserve University's Bearing Data Center, ResNet's CNN model was used to diagnose the fault status of normal bearings as well as bearings with faults in the inner, outer, and rolling elements, and compared with two other machine learning models, Random Forest and CNN. The research results indicate that the ResNet CNN model outperforms the other two methods in key performance indicators such as accuracy and recall, demonstrating its effectiveness and superiority in bearing fault diagnosis.

 
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询