214 / 2024-09-02 10:21:30
Rolling bearing fault diagnosis method based on Swin transformer and unsupervised learning
Rolling bearing, Fault diagnosis, Deep learning, Swin transformer.
全文被拒
WangYi / AHJZU
In order to perform fault diagnosis under the condition of only having health status data, an optimized Swin Transformer deep neural network architecture is constructed to extract and reconstruct the features of health data, and an unsupervised learning method for rolling bearing fault diagnosis is proposed. Compared with autoencoders, deep encoders, convolutional autoencoders, and sparse autoencoders, the accuracy is 98.62%, 76.46%, 68.69%, 77.69%, and 68.00%, respectively. Compared with the comparison network, the accuracy is improved by more than 20%.

 
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询