36 / 2024-08-14 17:01:43
Frequency Domain-Based Low-Rank Approximation for Magnetic Anomaly Detection
Magnetic anomaly detection,2D Discrete Fourier Transform,Low-rank approximation,Noise suppression
全文录用
吕雨萌 / 中国地质大学(武汉)
LiaoCongyu / Stanford University
刘欢 / 中国地质大学(武汉)
Current magnetic anomaly detection (MAD) methods prioritize signal-to-noise ratio (SNR) over signal features and edge information, leading to signal distortion. To address this issue, a new MAD approach utilizes structured low-rank approximation and block singular value decomposition based on the spatial frequency domain, dubbed FL-BSVD is proposed. First, the low-rankness structure of the magnetic anomaly signal is obtained through 2D Discrete Fourier Transform (2D-DFT) and structured Hankel transformation. Then, block singular value decomposition is applied to the Hankel matrix to reduce noise while preserving more signal edge features and enhancing detection accuracy. Finally, a field experiment comparing FL-BSVD with four commonly used methods is conducted. The experiment confirms that FL-BSVD can effectively recover magnetic anomaly signal features and edge information in a strong noisy environment.
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询