Time-frequency domain feature enhanced sparse matrix and singular value vector optimization for gearbox fault diagnosis
编号:119 访问权限:仅限参会人 更新:2024-10-23 10:00:24 浏览:174次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Time-frequency analysis is an effective method to extract features from vibration signals by acquiring time-frequency spectrum from time series. However, gearbox is usually operating in harsh working environment especially in variable rotor speed condition, thus fault component is buried in strong background noise and harmonic interference. Therefore, a time-frequency domain feature enhanced sparse matrix and singular value vector optimization method is proposed to detect and extract gearbox fault features more accurately. A novel time-frequency transform method is implemented to concentrate the energy of gearbox fault character. The minimax concave penalized sparse optimization is implemented to emphasize the sparsity of time frequency domain and the model is derived by proximal operator. Then, the sparse matrix and singular value vector optimization model is built to extract the feature of gearbox fault. The simulated signal and experimental signal both validate the effectiveness of the proposed method.
关键词
sparse signal processing,sparse representation,time frequency
报告人
邱天序
硕士研究生 苏州大学

稿件作者
邱天序 苏州大学
王丽泽 苏州大学
黄伟国 苏州大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询