CoP-YOLO: A Light-weight Dangerous Driving Behavior Detection Method
编号:164 访问权限:仅限参会人 更新:2024-10-27 22:04:07 浏览:207次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
With the continuous increase in vehicle ownership, the incidence of traffic accidents has also escalated, with 90% attributed to human aspect. To mitigate the impact of dangerous driving behaviors, this study introduces a lightweight detection method for hazardous driving behaviors based on visual perception. This research uses YOLOv10 as the baseline model, employing partial convolution to minimize unnecessary computational overhead and memory access, while integrating the coordinate attention mechanism to enhance feature extraction and improve the representation of regions of interest. The research achieves a significant reduction in model parameters and computational complexity, alongside an improvement in detection accuracy, culminating in an efficient system for monitoring dangerous driving behaviors. The system's performance is evaluated using a proprietary dataset, demonstrating that this method not only enables precise real-time recognition and detection of driving anomalies but also maintains a compact model size, and the inference speed can reach 87fps on the NVIDIA ORIN NX embedded device.
 
关键词
object detection, dangerous drivng, self-attention, partial convolution
报告人
ZhangRuiyang
Student Harbin Institute of Technology

稿件作者
ZhangRuiyang Harbin Institute of Technology
LiuYilin Harbin Institute of Technology
WangBenkuan Harbin Institute of Technology
LiuDatong Harbin Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询