Wafer Defect Detection Based on YOLO-BA
编号:167 访问权限:仅限参会人 更新:2024-10-23 10:02:36 浏览:202次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Abstract: With the advancement of the chip industry and manufacturing processes are becoming increasingly sophisticated, the scale and complexity of integrated circuits have significantly increased. This has made wafer manufacturing processes more intricate, leading to a higher probability and variety of wafer defects. To enhance production yield and improve process control, it is crucial to identify defects and address corresponding process issues. This paper presents an improved YOLO-BA wafer detection algorithm based on YOLOv10n. The approach introduces Bottleneck Transformers (BoT) and Adaptive Kernel Convolution (AKConv) into the backbone network, effectively suppressing interference from complex background information while reducing feature redundancy in spatial and channel dimensions. This enables more efficient feature extraction of wafer defects while maintaining model lightweightness. Experimental results show that the improved algorithm achieves a 0.9% higher recall rate, 0.8% higher mAP0.5_0.95, and 0.4% higher mAP0.5 compared to the latest YOLOv10n model, with similar parameter counts and GFLOPs.
Keywords: Wafer, Defect Detection, Deep Learning, YOLOv10, self-attention mechanism
关键词
Wafer,Defect Detection,Deep Learning,YOLOv10,self-attention mechanism
报告人
LuXiangning
Prof. Jiangsu Normal University

稿件作者
ShuXiaotong Jiangsu Normal University
XuLin Jiangsu Normal University
HeZhenzhi Jiangsu Normal University
ShengLianchao Jiangsu Normal University
YeGuo Jiangsu Normal University
LuXiangning Jiangsu Normal University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询