Single-Source Domain Generalization Fault Diagnosis of Wheel-Set Bearings Based on Flow Model and Contrastive Learning
编号:23 访问权限:仅限参会人 更新:2024-10-23 10:55:38 浏览:163次 口头报告

报告开始:2024年11月02日 11:30(Asia/Shanghai)

报告时间:20min

所在会场:[P1] Parallel Session 1 [P1-2] Parallel Session 1(November 2 AM)

暂无文件

摘要
Domain generalization methods can effectively identify mechanical faults under unseen working conditions. However, most of them require data from multiple source domains for model training. Nevertheless, the collection of monitoring data of each health state under different working conditions is unpractical for wheel-set bearings. Aiming at the difficulty of obtaining multi-source domain data, a single-source domain generalization model based on flow model and contrastive learning is proposed for fault diagnosis of wheel-set bearings under various working conditions. The proposed model employs flow model as a domain generation module to generate samples in an extended domain. Then, domain-invariant features are extracted from the source domain and the extended domain. The diversity of the generated samples and the effectiveness of the domain-invariant features are guaranteed by a strategy of adversarial contrastive learning. Finally, single-source domain generalization fault diagnosis experiments carried out on a wheel-set bearing dataset verify the good performance of the proposed method over the traditional domain generalization methods.
关键词
single domain generalization, fault diagnosis, wheel-set bearing, flow model, contrast learning
报告人
YuBochao
Mr. Soochow University

稿件作者
YuBochao Soochow University
WangJun Soochow University
RenHe Changzhou University
HuangWeiguo Soochow University
ZhuZhongkui Soochow University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询