Frequency Domain-Based Low-Rank Approximation for Magnetic Anomaly Detection
编号:29 访问权限:仅限参会人 更新:2024-10-23 10:48:06 浏览:162次 口头报告

报告开始:2024年11月02日 10:50(Asia/Shanghai)

报告时间:20min

所在会场:[P1] Parallel Session 1 [P1-2] Parallel Session 1(November 2 AM)

暂无文件

摘要
Current magnetic anomaly detection (MAD) methods prioritize signal-to-noise ratio (SNR) over signal features and edge information, leading to signal distortion. To address this issue, a new MAD approach utilizes structured low-rank approximation and block singular value decomposition based on the spatial frequency domain, dubbed FL-BSVD is proposed. First, the low-rankness structure of the magnetic anomaly signal is obtained through 2D Discrete Fourier Transform (2D-DFT) and structured Hankel transformation. Then, block singular value decomposition is applied to the Hankel matrix to reduce noise while preserving more signal edge features and enhancing detection accuracy. Finally, a field experiment comparing FL-BSVD with four commonly used methods is conducted. The experiment confirms that FL-BSVD can effectively recover magnetic anomaly signal features and edge information in a strong noisy environment.
关键词
Magnetic anomaly detection,2D Discrete Fourier Transform,Low-rank approximation,Noise suppression
报告人
吕雨萌
Ms. 中国地质大学(武汉)

稿件作者
吕雨萌 中国地质大学(武汉)
LiaoCongyu Stanford University
刘欢 中国地质大学(武汉)
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询