A Unified Framework Integrating Knowledge and Data for Collaborative Root Cause Identification
编号:32 访问权限:仅限参会人 更新:2024-10-23 10:49:23 浏览:200次 口头报告

报告开始:2024年11月01日 15:20(Asia/Shanghai)

报告时间:20min

所在会场:[P3] Parallel Session 3 [P3-1] Parallel Session 3(November 1 PM)

暂无文件

摘要
Capturing the root cause and propagation path of the fault is critical to ensuring the safety and efficiency of industrial processes, especially those that inadequately utilize process knowledge and data. To address this issue, a unified framework integrating knowledge and data for collaborative root cause identification is proposed. First, the knowledge causal graph (KCG) is constructed using expert knowledge and industrial flow charts, providing a preliminary reference for subsequent causality analysis. Next, by replacing the traditional vector autoregression (VAR) model in Granger Causality (GC) with the gated recurrent unit (GRU), a more reliable causal relationship between variables is obtained. Additionally, a causality fusion propagation path identification method (CF-PPI) is designed to identify the root cause and propagation path of the fault, so that the obtained fault propagation path has less redundancy and higher accuracy. Finally, the method is validated using data from the ASHRAE RP-1043 centrifugal chiller.
关键词
Knowledge and data, Granger Causality anal-ysis, propagation path determination, collaborative root cause identification
报告人
YuJiefei
master Anhui University

稿件作者
YuJiefei Anhui University
CaoZicheng Anhui University
HeSiyi Anhui University
GuZuyi Anhui University
XuYingchen Anhui University
ZhongKai Anhui University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询