Application of mT5 and Semantic Role Labeling for Aspect-Based Sentiment Analysis in Political Opinion
编号:37 访问权限:仅限参会人 更新:2024-10-23 10:51:00 浏览:182次 口头报告

报告开始:2024年11月02日 10:30(Asia/Shanghai)

报告时间:20min

所在会场:[P5] Parallel Session 5 [P5-2] Parallel Session 5(November 2 AM)

暂无文件

摘要
As aspect-based sentiment analysis (ABSA) extends its application across various domains, effectively utilizing this technology in political opinion analysis poses significant challenges, particularly due to limited training data in sensitive areas. To address this, we constructed two datasets: a 7,334-sample three-class sentiment analysis dataset from political news via web scraping, and a high-quality dataset of 100 manually annotated news sentences designed for testing aspect-level sentiment computation. "This paper proposes a sentiment classification method based on the mT5 model, combined with Named Entity Recognition (NER) and Semantic Role Labeling (SRL). Experimental results show that our method performs comparably to existing approaches on the SemEval-2014 (Rest14) dataset, while achieving 84% accuracy in aspect entity recognition and 69% overall recognition accuracy on our custom dataset. These findings suggest that the proposed method can significantly enhance model performance in scenarios with limited and sensitive training data.
关键词
Political Opinion Analysis,mT5 ModelSemantic Role Labeling (SRL),mT5 Model,News Sentiment Analysis
报告人
YuJinpeng
Master Tongji University

稿件作者
YuJinpeng Tongji University
LiZijun Tongji University
LiuNa Tongji University
KongWeixuan Tongji University
XiaoHui Tongji University
李雪峰 同济大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询